

External API
description
January 2022

 2

1 Introduction...3

2 A few examples...3

2.1 Get the trackers ..3

2.2 Retrieve time series info ..4

2.3 Retrieve location info ...5

2.4 Retrieve the active alerts ...6

3 DEV API keys ..7

4 API overview with Swagger ..8

5 Testing the REST API with Postman ..9

6 Strategy for syncing all data in pull mode .. 10

7 Push mode .. 12

7.1 Principle... 12

7.2 Configuring webhooks .. 13

7.3 Webhook retries .. 16

7.4 Debugging REST webhooks with RequestBin ... 17

7.5 Testing MQTT webhooks with Amazon MQTT .. 18

7.6 Testing MQTT webhooks with Azure IoTHub ... 24

 3

1 Introduction
This document describes the key principles of the integration API with the Sensolus
platform.

Broadly speaking this API has three goals:

• Extract data from the platform. The data is split in different categories:
o Time series data: the most low-level observations like coordinates,

signal RSSI, matching geo-zones, …. A timeseries element Is
fundamentally an entity with a timestamp, a metric type and a value.

o Aggregated data: here an observation gets grouped in a more complete
package. E.g. a location observation groups the coordinates, the source
of the coordinates, the trigger for the measurements

o Alerts
• Inject data into the platform

o Custom metrics can be inserted in the platform and later used for
querying

• Perform administrative actions:
o Configure tracker with name, tags, third-party ID, Image
o Define alert rules
o Define geozones
o Define geobeacons
o Define webhooks

With respect to aggregated data there are 2 broad mechanisms to extract the data
from the platform:

• Pull: the client needs to periodically poll the system and check what is new and
retrieve that data. The protocol being used is REST with JSON encoded data.

Push: the Sensolus platform will push the data as soon as it is available towards
the client. REST based push and MQTT is supported. Typically, the push method
is preferred if the goal of the external party is to remain completely in sync with
the data in the Sensolus platform. It also avoids hitting API quota limits. The pull
mechanism can still be used to do an initial sync or to support exceptional
querying cases.

2 A few examples
2.1 Get the trackers

Let's start with an example to retrieve the list of trackers:

Request:
GET {{SERVER}}/rest/api/v2/devices/{{SERIAL}}?apiKey={{API_KEY}}

 4

Response:
{

 "name": "Trailer BE-5124",

 "serial": "CWDQHT",

 "sigfoxContractInfo": {

 "contractType": "CONTRACT",

 "activatedAt": "2019-06-04T07:10:38+0000",

 "endsAt": "2020-06-04T07:10:38+0000"

 },

 "status": "ONLINE",

 "sigfoxActivationStatus": "ACTIVATED",

 "batteryInfo": {

 "batteryLevelPercentage": 95,

 "estimatedRemainingBatteryLife": 35,

 "batteryEstimationCalibrated": true,

 "updatedAt": "2019-12-02T15:10:25+0000"

 },

 "firstMessageAt": "2018-11-15T20:20:52+0000",

 "lastSeenAlive": "2019-12-03T07:08:50+0000",

 "productKey": "SNT2 PRO GPS B2 4.2",

 "hwRevisionKey": "SNT2 rev B2 - connect",

 "deviceTags": [],

 "image": {},

 "productName": "SNT2 PRO GPS B2 4.2"

}

We can see the following elements in this example:

• Authentication happens with an API key passed as a query parameter
• Responses are always JSON encoded
• Timestamps are ISO-8601 encoded. That will go for all timestamps used in

requests and responses

2.2 Retrieve time series info

To know what time series are available, use following API call:

Request:
GET {{SERVER}}/rest/api/v2/devices/{{SERIAL}}/

timeseries/types?apiKey={{API_KEY}}

Response
[

 {

 "key": "DEVICE_STATISTICS_COMM_TOTAL_NUMBER_DI_RETRANSMITS",

 "description": "This timeserie contains number of DI re-

transmits, messages sent from DIQ, not the first transmission from

MSGQ"

 },

 {

 "key": "NETWORK_BASED_LOCATION_SOURCE",

 5

 "description": "The source of the network location. Possible

values are: sigfox_first_receiving_basestation_location |

sigfox_triangulation"

 },

 {

 "key": "SENSOR_DATA_GPS_LOCATION_ADDRESS",

 "description": "The GPS address derived from a GPS location."

 },

 {

 "key": "SENSOR_DATA_WIFI_SCAN_NUMBER_OF_MACS",

 "description": "This timeserie will contain the"

 },

 …

]

To get a time series:
GET {{SERVER}}/rest/api/v2/devices/{{SERIAL}}/ timeseries?

series={TIME SERIES}&timeFilter={byMessageTime/byInsertTime

}&from={DATE}&to={DATE}&apiKey={{API_KEY}}

2.3 Retrieve location info

As a final example let's retrieve the location history for a time window:

Request:
GET

{{SERVER}}/rest/api/v2/devices/{{SERIAL}}/data/aggregated/location?ap

iKey={{API_KEY}}&from=2019-09-22T00:00:00%2B0000&to=2019-09-

30T00:00:00%2B0000&timeSorting=DESC&timeFilter=byMessageTime

Response
[

 {

 "data": [

 {

 "state": "STOP",

 "lat": 51.05985,

 "lng": 3.69419,

 "accuracy": 20,

 6

 "fixTime": 134,

 "source": "gps",

 "geozones": [

 "all the world"

],

 "address": "[Undecoded]",

 "id": 100163695,

 "time": "2019-09-29T12:13:00+0000",

 "insertTime": "2019-09-29T12:20:40+0000"

 },

 …

],

 "truncated": false,

 "skipped": false,

 "serial": "CWDQHT"

 }

]

The request specifies the following:

• the tracker serial
• the type of aggregated data to retrieve, here we want location data
• the time window: from and to
• how we want the data

In this response we observe the following:

• An array of location records. We have not printed the full content of the array
in this document.

• At the end 2 Boolean parameters:
o truncated: there is a maximum number of records we return in a single

call. If this flag is true you should reduce the size of the window
o skipped: not relevant when retrieving data for a single tracker

2.4 Retrieve the active alerts

As a final example let us show how the active alerts can be retrieved:

Request:
GET

{{SERVER}}/rest/api/v1/devices/{{SERIAL}}/alerts/active?apiKey={{API_

KEY}}

Response:
[

 {

 "date": "2019-09-11T06:06:00+0000",

 "alertType": "GeozoneOutsideAlertType",

 7

 "title": "Phi Test ouside Geozone",

 "alertRule": {

 "id": 861,

 "title": "Phi Test ouside Geozone",

 "description": "Phi Test ouside Geozone",

 "active": true,

 "alertTypeName": "GeozoneOutsideAlertType",

 "definitions": {

 "selectedIds": [

 696

]

 },

 "alertNotifications": [

 {

 "emails": [],

 "contacts": [

 "8a8081f56a4e993b016a4ee2b3d80000"

],

 "notificationType": "EMAIL"

 }

],

 "severity": "REMINDER",

 "monitoredItem": {

 "selectedIds": [],

 "selectType": "ALL",

 "monitoredType": "DEVICE"

 }

 },

 "monitoredEntity": {

 "entityType": "DEVICE",

 "sigfoxDevice": {

 "serial": "CWDQHT",

 "name": "lrnc CWDQHT",

 "lastKnownLat": 51.05461,

 "lastKnownLng": 3.71665,

 "lastLocationUpdate": "2019-12-03T15:15:00+0000",

 "lastSeenAlive": "2019-12-03T15:20:26+0000",

 "gpsSignalAvailable": true,

 "lastMovementDetected": "2019-12-03T15:15:00+0000",

 "status": "ONLINE"

 }

 }

]

3 DEV API keys
The API key must be passed for every call to the platform. API calls have a maximum
number of requests on a monthly basis and the current usage can be seen in the UI:

 8

Everyone with the API key can make calls with it, so you are supposed to keep you’re
API key in a secure place.

It is possible to limit API calls to a specific subnet only to avoid quota theft.

4 API overview with Swagger
The best way to explore all the API's is to login to the platform and go to the section
Developers → API docs:

This shows a Swagger view where you can see all API's and experiment with them
directly in the browser.

For example, let's look at the request to define a geo beacon:

 9

It will show all the parameters and their expected structure. The goal of this
document is not to give an exhaustive overview of every single API call. The API
itself is best explored with Swagger.

5 Testing the REST API with Postman
Postman is a well-known tool to test REST clients. It allows you to construct quickly
REST calls and see the results of their invocation:

One of the nice aspects of Postman is that you can generate client code for various
programming languages.

 10

The Sensolus team publishes a Postman collection file which helps you to get started.
Ask your Sensolus contact.

6 Strategy for syncing all data in pull mode
A very common use case is syncing all data across a large set of devices. The simple
approach is to retrieve all data for all devices in a big loop by iterating over all
devices, but this will quickly exhaust the API quota. However, there is a strategy to
do it efficiently.

The solution is based on using the bulk retrieval call:

 11

The bulk API call allows to pass a set of serials in one shot. As you can see the
maximum number of results across all trackers is 1000. That means depending on
the number of trackers and the time window the likelihood of having truncated data
is large. For the bulk call the response will indicate per serial whether the data is
truncated and/or skipped. Truncated means there was more data, but it didn't fit in
the response. Skipped means that because of other trackers we already exhausted
the budget. In both cases you need to do a new call to retrieve the missing data.

In the request object we can see there is time window per tracker. By incrementally
updating this window we can retrieve all data without requesting the same data
twice. The following mechanism should be used:

• start with the desired same window for all trackers
• if the tracker data was not truncated and not skipped -> do not include in the

next request, we are complete
• if the tracker data was truncated and not skipped: update the time window to

exclude what you got already. The update should be done depending on the
sort order of the data

• if the data was skipped -> repeat the call with the same time window

This sequence can be repeated until all data is retrieved.

There is one thing which should still discuss and that is the time filter attribute. It has
two possible values: byMessageTime and byInsertTime. Data from the trackers does
not always arrive in real time. As such there is a difference between the time of the
message and the time it got inserted in the platform. If the goal is to retrieve all data
one should query byInsertTime. If you have synced the data byInsertTime for a certain

 12

window you can be guaranteed there will be no new data for that window. That
guarantee is not available if you query by message time. Up to 90 days later data can
still be recovered.

7 Push mode
7.1 Principle

A more efficient way to sync all data can be to setup an endpoint to retrieve the data
from Sensolus as soon as it arrives. We support two mechanisms for push mode

• HTTP endpoint: we will do a REST call, you can configure the URL and header
fields

• MQTT: MQTT is a lightweight protocol that is optimized for networks with
small bandwidth and high latency. It supports simple publish/subscribe
semantics and is specifically designed with IoT devices in mind. It is an ideal
solution for integration of the SNT platform with existing IoT architectures
where SNT can act as a hub that reliably captures the Sigfox data, adds the
device metadata and publishes them to specific topics based on certain
parameters like tags

The data you will receive over both methods looks very similar to the data you
retrieve over the pull REST API. A sample is given below:

{

"dataType": activity,

"data":

{

"state": "STOP",

"lat": 50.926003,

"lng": 4.0446835,

"accuracy": 4468,

"source": "network",

"id": 798343,

"time": "2018-07-31T08:47:00+0000",

"insertTime": "2018-07-31T08:53:48+0000",

"serial": "RJH963",

"thirdPartyId": "ABC",

}

The only difference is that every data item contains 2 extra fields:

• serial
• third party id

We expect the endpoint to return 200 OK. The body will be ignored.

 13

7.2 Configuring webhooks

In the platform push mode is called Webhooks and they can be configured through
the UI. Go to the Admin -> Organizations. The Webhook tab will be visible there

Click add webhook.

For HTTP we have the following configuration:

 14

• URL pattern: REST callback URL. May contain placeholders for some
parameters like serial, third party id and time (Unix time)

• HTTP method: PUT or POST
• HTTP headers: this can be used to add values like authentication headers
• Enabled: enable or disable webhook
• Data types: select one more of activity, location, pt100_temperature
• Tags: a list of device tags. If not empty, only messages for tagged devices will

be sent
• Script: an (optional) transformation script to transform the original message

payload in a new payload. This is useful when the webhook server expects a
certain predefined format.
The script should be written in javascript and should evaluate to the expected
new format. There is 1 input variable that can be used: message. The result of
your script is the same as what you would get by calling the javascript eval()
method on your script. It will evaluate to the last entered statement in your
script. As an example:

In this case transformedMessage is calculated and repeated as a statement on
the last line. The result may look something like:

• Test button: test correct behavior, will send a demo message and show

successful response code 200 OK

 15

Save button: save the REST push webhook -> webhook is added to the table (see
next)

For MQTT the configuration window looks like:

• Provider: the IoT hub provider. We currently support Amazon AWS and

Microsoft Azure
• End point: host name of the end point. A typical example for AWS IoT core

service is given
• Topic/device: name of the topic (AWS) or device (Azure) to which messages

should be published
• Certificate file (cert.pem): the certificate file for the mutual SSH authentication
• Private key file (key.pem): the private key file for the mutual SSH

authentication
• Enabled: enable or disable webhook
• Data types: select one or more of activity, location, pt100_temperature
• Tags: a list of device tags. If not empty, only messages for tagged devices will

be sent
• Script: an (optional) transformation script (see HTTP case above for an

example)
• Test button: test correct behavior, will send a demo message and show

successful response code 200 OK

Save button: save the REST push webhook -> webhook is added to the table (see
next)

 16

To troubleshoot callbacks the most recent callbacks are visualized in the callbacks
tab:

A click on the icon shows the detail of the callback:

7.3 Webhook retries

When we try to connect to an external system via Webhooks and it doesn't reply 3
times in a row within 30 seconds the system is blacklisted. This is to keep our
handling sane because timeouts keep threads busy. With the webhook retries we
redo the failed webhooks one hour later once the blacklist has been lifted.

 17

7.4 Debugging REST webhooks with RequestBin

The fastest way to see the REST webhooks in action is to use RequestBin
(https://requestbin.com) to create a web endpoint which will login all calls.

The RequestBin website will show the endpoint:

For every call which arrives a new entry will appear in the list on the left-hand side.
Select it to see the details of the call back in the master pane:

https://requestbin.com/

 18

7.5 Testing MQTT webhooks with Amazon MQTT

AWS provides a good environment to test and validate the MQTT functionality. This
section describes step by step how to get this configured.

IOT service

Go to the IOT core service

Thing creation

Next go to Manage -> Things. Click on 'register a thing'

 19

Click on 'create a simple thing'

Give a name and go to next

Click on the top button to create a certificate with a simple click.

Now you will see a new screen where certificates can be downloaded. We will need
the following files:

• the certificate (1st link)
• the private key (3rd link)

 20

Now click done.

Policy creation

Next, we need to create a policy. X.509 certificates are used to authenticate your
device with AWS IoT Core. AWS IoT Core policies are used to authorize your device
to perform AWS IoT Core operations, such as subscribing or publishing to MQTT
topics. Your device presents its certificate when sending messages to AWS IoT Core.
To allow your device to perform AWS IoT Core operations, you must create an AWS
IoT Core policy and attach it to your device certificate.

In the left navigation pane, choose Secure, and then choose Policies. Click create a
policy.

On the Create a policy page, in the Name field, enter a name for the policy (for
example, MyPolicy). Do not use personally identifiable information in your policy
names.

 21

In the Action field, enter 'iot:*'. In the Resource ARN field, enter *. Select the Allow
check box. This allows all clients to connect to AWS IoT Core.

You can restrict which clients (devices) can connect by specifying a cl ient ARN as the
resource. The client ARNs follow this format:

arn:aws:iot:your-region:your-aws-account:client/<my-client-id>

Choose the Add Statement button to add another policy statement. In the Action
field, enter iot:*. In the Resource ARN field, enter the ARN of the topic to which your
device publishes.

The topic ARN follows this format:
arn:aws:iot:your-region:your-aws-account:topic/<your/topic>

For example:
arn:aws:iot:us-east-1:123456789012:topic/my/topic

Finally, select the Allow check box. This allows your device to publish messages to
the specified topic.

After you have entered the information for your policy, choose Create.

Attach an AWS IoT Core policy to a device certificate

Now that you have created a policy, you must attach it to your device certificate.
Attaching an AWS IoT Core policy to a certificate gives the device the permissions
specified in the policy.

In the left navigation pane, choose Secure, and then choose Certificates.

In the box for the certificate you created, choose ... to open a drop-down menu, and
then choose Attach policy.

 22

Finally, also activate the certificate. Select the certificate from the list, click on the 3
dots to get the menu and choose the active action.

This concludes everything which needs to be done on the AWS side.

Sensolus MQTT configuration

Next fill in the MQTT settings in the Sensolus Web application:

 23

A few fields need some explanation:

• endpoint: this value can be found in the AWS console under Things ->
Shadows:

• private and public key: these files where downloaded when the certificate was
created.

In the Sensolus application the 'Test' button will now send a dummy message to the
topic. If all configuration was done correctly this should give a success message:

 24

AWS subscribe test

The AWS console can be used to see the messages being published. In the left menu
bar select test, fill in the topic name and click 'Subscribe to topic'

Now you should see every message published to the topic.

7.6 Testing MQTT webhooks with Azure IoTHub

This section gives a step-by-step explanation on how to configure an MQTT
connection to the Microsoft Azure IoT Hub.

More information on the Azure IoT hub can be found here:
https://azure.microsoft.com/en-us/services/iot-hub/

The first step is to create an IoT hub from the Azure portal:

https://portal.azure.com/

Look for IoT hub in the services list or enter IoT hub in the search area.

https://azure.microsoft.com/en-us/services/iot-hub/
https://portal.azure.com/

 25

Create an IoT hub

• you may start with a trial subscription
• just pick a name and a region
• create a new resource group

You should see the following overview page:

Add a X509 certificate

To safely connect the SNT platform to the IoT hub we will make use of mutual SSL
authentication. For this reason you have to add a certificate to your IoT hub.

 26

You will have to add a root certificate and also prove that you own it. You can
purchase a certificate with a certificate authority but you can also use a self-signed
certificate (after all, this is only meant for internal communication).

A nice description and some useful tools such as bash scripts are provided here:

https://github.com/Azure/azure-iot-sdk-
c/blob/master/tools/CACertificates/CACertificateOverview.md

Create your device

• create a leaf device (edge devices are special devices with custom firmware)
• select the option to authenticate through a CA certificate
• enable connection to IoT hub

Sensolus MQTT configuration

https://github.com/Azure/azure-iot-sdk-c/blob/master/tools/CACertificates/CACertificateOverview.md
https://github.com/Azure/azure-iot-sdk-c/blob/master/tools/CACertificates/CACertificateOverview.md

 27

Next fill in the MQTT settings in the Sensolus Web application:

• the end point is just the name of your hub followed by .azure-devices.net
• device is the name of your device
• the certificate file should be a pem file with the certificate. It can be found in

the cert folder as <device>.cert.pem if you use the Azure tools. The content
looks like this:

• The private key file should be a pem file with the private key. It can be found
in the private folder as <device>.key.pem if you use the Azure tools. Content
looks like this:

In the Sensolus application the 'Test' button will now send a dummy message to the
topic. If all configuration was done correctly this should give a success message:

-----BEGIN CERTIFICATE-----

MIIFfjCCA2agAwIBAgIBAzANBgkqhkiG9w0BAQsFADAqMSgwJgYDVQQDDB9BenVy

ZSBJb1QgSHViIENBIENlcnQgVGVzdCBPbmx5MB4XDTIxMDIwNDE1NTk1MVoXDTIx

…

-----END CERTIFICATE-----

-----BEGIN RSA PRIVATE KEY-----

MIIJJwIBAAKCAgEAvwhvebAoHvJNHh+lPFqW9hvcr/gYf22/iwBZDg2k4evkK841

pUPmTPBytnYsVVRAkz/F/2UobVa9PAUCe9I/d+8tFJVuebrJD7DKwU0tPsPcXoab

…

-----END RSA PRIVATE KEY-----

 28

IoT Hub routing
Once you send messages into IoT Hub, you can consume them on the Event Hub-
compatible endpoint of the IoT Hub (https://docs.microsoft.com/en-us/azure/iot-
hub/iot-hub-devguide-messages-d2c#routing-endpoints).
If you need the data in a "real" Event Hub, you can use routing to forward the
messages from the IoT Hub into an Event Hub. You can also route messages to a
datastore, of course. Please consult the IoT hub documentation.

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-messages-d2c#routing-endpoints
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-messages-d2c#routing-endpoints

